抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

JMM特性

Java内存模型的承诺

这里我们先来了解几个概念,即原子性?可见性?有序性?最后再阐明JMM是如何保证这3个特性。

原子性

​ 原子性指的是一个操作是不可中断的,即使是在多线程环境下,一个操作一旦开始就不会被其他线程影响。比如对于一个静态变量int x,两条线程同时对他赋值,线程A赋值为1,而线程B赋值为2,不管线程如何运行,最终x的值要么是1,要么是2,线程A和线程B间的操作是没有干扰的,这就是原子性操作,不可被中断的特点。有点要注意的是,对于32位系统的来说,long类型数据和double类型数据(对于基本数据类型,byte,short,int,float,boolean,char读写是原子操作),它们的读写并非原子性的,也就是说如果存在两条线程同时对long类型或者double类型的数据进行读写是存在相互干扰的,因为对于32位虚拟机来说,每次原子读写是32位的,而long和double则是64位的存储单元,这样会导致一个线程在写时,操作完前32位的原子操作后,轮到B线程读取时,恰好只读取到了后32位的数据,这样可能会读取到一个既非原值又不是线程修改值的变量,它可能是“半个变量”的数值,即64位数据被两个线程分成了两次读取。但也不必太担心,因为读取到“半个变量”的情况比较少见,至少在目前的商用的虚拟机中,几乎都把64位的数据的读写操作作为原子操作来执行,因此对于这个问题不必太在意,知道这么回事即可。

可见性

​ 理解了指令重排现象后,可见性容易了,可见性指的是当一个线程修改了某个共享变量的值,其他线程是否能够马上得知这个修改的值。对于串行程序来说,可见性是不存在的,因为我们在任何一个操作中修改了某个变量的值,后续的操作中都能读取这个变量值,并且是修改过的新值。但在多线程环境中可就不一定了,前面我们分析过,由于线程对共享变量的操作都是线程拷贝到各自的工作内存进行操作后才写回到主内存中的,这就可能存在一个线程A修改了共享变量x的值,还未写回主内存时,另外一个线程B又对主内存中同一个共享变量x进行操作,但此时A线程工作内存中共享变量x对线程B来说并不可见,这种工作内存与主内存同步延迟现象就造成了可见性问题,另外指令重排以及编译器优化也可能导致可见性问题,通过前面的分析,我们知道无论是编译器优化还是处理器优化的重排现象,在多线程环境下,确实会导致程序轮序执行的问题,从而也就导致可见性问题。

有序性

​ 有序性是指对于单线程的执行代码,我们总是认为代码的执行是按顺序依次执行的,这样的理解并没有毛 病,毕竟对于单线程而言确实如此,但对于多线程环境,则可能出现乱序现象,因为程序编译成机器码指令后可能会出现指令重排现象,重排后的指令与原指令的顺序未必一致,要明白的是,在Java程序中,倘若在本线程内,所有操作都视为有序行为,如果是多线程环境下,一个线程中观察另外一个线程,所有操作都是无序的,前半句指的是单线程内保证串行语义执行的一致性,后半句则指指令重排现象和工作内存与主内存同步延迟现象。

JMM提供的解决方案

​ 在理解了原子性,可见性以及有序性问题后,看看JMM是如何保证的,在Java内存模型中都提供一套解决方案供Java工程师在开发过程使用,如原子性问题,除了JVM自身提供的对基本数据类型读写操作的原子性外,对于方法级别或者代码块级别的原子性操作,可以使用synchronized关键字或者重入锁(ReentrantLock)保证程序执行的原子性。而工作内存与主内存同步延迟现象导致的可见性问题,可以使用synchronized关键字或者volatile关键字解决,它们都可以使一个线程修改后的变量立即对其他线程可见。对于指令重排导致的可见性问题和有序性问题,则可以利用volatile关键字解决,因为volatile的另外一个作用就是禁止重排序优化,关于volatile稍后会进一步分析。除了靠sychronized和volatile关键字来保证原子性、可见性以及有序性外,JMM内部还定义一套happens-before 原则来保证多线程环境下两个操作间的原子性、可见性以及有序性。

理解指令重排

计算机在执行程序时,为了提高性能,编译器和处理器的常常会对指令做重排,一般分以下3种

  • 编译器优化的重排

    ​ 编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。

  • 指令并行的重排

    ​ 现代处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性(即后一个执行的语句无需依赖前面执行的语句的结果),处理器可以改变语句对应的机器指令的执行顺序

  • 内存系统的重排

    ​ 由于处理器使用缓存和读写缓存冲区,这使得加载(load)和存储(store)操作看上去可能是在乱序执行,因为三级缓存的存在,导致内存与缓存的数据同步存在时间差。

其中编译器优化的重排属于编译期重排,指令并行的重排和内存系统的重排属于处理器重排,在多线程环境中,这些重排优化可能会导致程序出现内存可见性问题,下面分别阐明这两种重排优化可能带来的问题

编译器重排

下面我们简单看一个编译器重排的例子:

1
2
3
线程 A             	线程 B
1: x2 = a; 3: x1 = b ;
2: b = 1; 4: a = 2 ;

​ 两个线程同时执行,分别有1、2、3、4四段执行代码,其中1、2属于线程A , 3、4属于线程B,从程序的执行顺序上看,似乎不太可能出现x1 = 1 和x2 = 2 的情况,但实际上这种情况是有可能发现的,因为如果编译器对这段程序代码执行重排优化后,可能出现下列情况

1
2
3
线程 A              线程 B
2: b = 1; 4: a = 2 ;
1: x2 = a ; 3: x1 = b ;

​ 这种执行顺序下就有可能出现x1 = 1 和x2 = 2 的情况,这也就说明在多线程环境下,由于编译器优化重排的存在,两个线程中使用的变量能否保证一致性是无法确定的。

处理器指令重排

先了解一下指令重排的概念,处理器指令重排是对CPU的性能优化,从指令的执行角度来说一条指令可以分为多个步骤完成,如下

  • 取指 IF
  • 译码和取寄存器操作数 ID
  • 执行或者有效地址计算 EX
  • 存储器访问 MEM
  • 写回 WB

CPU在工作时,需要将上述指令分为多个步骤依次执行(注意硬件不同有可能不一样),由于每一个步会使用到不同的硬件操作,比如取指时会只有PC寄存器和存储器,译码时会执行到指令寄存器组,执行时会执行ALU(算术逻辑单元)、写回时使用到寄存器组。为了提高硬件利用率,CPU指令是按流水线技术来执行的,如下:

​ 从图中可以看出当指令1还未执行完成时,第2条指令便利用空闲的硬件开始执行,这样做是有好处的,如果每个步骤花费1ms,那么如果第2条指令需要等待第1条指令执行完成后再执行的话,则需要等待5ms,但如果使用流水线技术的话,指令2只需等待1ms就可以开始执行了,这样就能大大提升CPU的执行性能。虽然流水线技术可以大大提升CPU的性能,但不幸的是一旦出现流水中断,所有硬件设备将会进入一轮停顿期,当再次弥补中断点可能需要几个周期,这样性能损失也会很大,就好比工厂组装手机的流水线,一旦某个零件组装中断,那么该零件往后的工人都有可能进入一轮或者几轮等待组装零件的过程。因此我们需要尽量阻止指令中断的情况,指令重排就是其中一种优化中断的手段,我们通过一个例子来阐明指令重排是如何阻止流水线技术中断的

1
2
a = b + c ;
d = e + f ;

下面通过汇编指令展示了上述代码在CPU执行的处理过程

  • LW指令:表示 load,其中LW R1,b表示把b的值加载到寄存器R1中
  • LW R2,c: 表示把c的值加载到寄存器R2中\
  • ADD 指令:表示加法,把R1 、R2的值相加,并存入R3寄存器中。
  • SW指令:表示 store 即将 R3寄存器的值保持到变量a中
  • LW R4,e: 表示把e的值加载到寄存器R4中
  • LW R5,f :表示把f的值加载到寄存器R5中
  • SUB 指令:表示减法,把R4 、R5的值相减,并存入R6寄存器中。
  • SW d,R6: 表示将R6寄存器的值保持到变量d中

​ 上述便是汇编指令的执行过程,在某些指令上存在X的标志,X代表中断的含义,也就是只要有X的地方就会导致指令流水线技术停顿,同时也会影响后续指令的执行,可能需要经过1个或几个指令周期才可能恢复正常,那为什么停顿呢?这是因为部分数据还没准备好,如执行ADD指令时,需要使用到前面指令的数据R1,R2,而此时R2的MEM操作没有完成,即未拷贝到存储器中,这样加法计算就无法进行,必须等到MEM操作完成后才能执行,也就因此而停顿了,其他指令也是类似的情况。前面阐述过,停顿会造成CPU性能下降,因此我们应该想办法消除这些停顿,这时就需要使用到指令重排了,如下图,既然ADD指令需要等待,那我们就利用等待的时间做些别的事情,如把LW R4,e 和 LW R5,f 移动到前面执行,毕竟LW R4,e 和 LW R5,f执行并没有数据依赖关系,对他们有数据依赖关系的SUB R6,R5,R4指令在R4,R5加载完成后才执行的,没有影响,过程如下:

正如上图所示,所有的停顿都完美消除了,指令流水线也无需中断了,这样CPU的性能也能带来很好的提升,这就是处理器指令重排的作用。关于编译器重排以及指令重排(这两种重排我们后面统一称为指令重排)相关内容已阐述清晰了,我们必须意识到对于单线程而已指令重排几乎不会带来任何影响,比竟重排的前提是保证串行语义执行的一致性,但对于多线程环境而已,指令重排就可能导致严重的程序轮序执行问题,如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class MixedOrder{
int a = 0;
boolean flag = false;
public void writer(){
a = 1;
flag = true;
}

public void read(){
if(flag){
int i = a + 1
}
}
}

​ 如上述代码,同时存在线程A和线程B对该实例对象进行操作,其中A线程调用写入方法,而B线程调用读取方法,由于指令重排等原因,可能导致程序执行顺序变为如下:

1
2
3
4
5
线程A                    线程B
writer: read:
1:flag = true; 1:flag = true;
2:a = 1; 2: a = 0 ; //误读
3: i = 1 ;

​ 由于指令重排的原因,线程A的flag置为true被提前执行了,而a赋值为1的程序还未执行完,此时线程B,恰好读取flag的值为true,直接获取a的值(此时B线程并不知道a为0)并执行i赋值操作,结果i的值为1,而不是预期的2,这就是多线程环境下,指令重排导致的程序乱序执行的结果。因此,请记住,指令重排只会保证单线程中串行语义的执行的一致性,但并不会关心多线程间的语义一致性。

内存屏障

​ 这里的关键是,由于写缓冲区仅对自己的处理器可见,它会导致处理器执行内存操作的顺序可能会与内存实际的操作执行顺序不一致。由于现代的处理器都会使用写缓冲区,因此现代的处理器都会允许对写-读操作重排序。

下面是常见处理器允许的重排序类型的列表:

Load-Load Load-Store Store-Store Store-Load 数据依赖
sparc-TSO N N N Y N
x86 N N N Y N
ia64 Y Y Y Y N
PowerPC Y Y Y Y N

上表单元格中的“N”表示处理器不允许两个操作重排序,“Y”表示允许重排序。
从上表我们可以看出:常见的处理器都允许Store-Load重排序;常见的处理器都不允许对存在数据依赖的操作做重排序。sparc-TSO和x86拥有相对较强的处理器内存模型,它们仅允许对写-读操作做重排序(因为它们都使用了写缓冲区)。

  • 注1:sparc-TSO是指以TSO(Total Store Order)内存模型运行时,sparc处理器的特性。
  • 注2:上表中的x86包括x64及AMD64。
  • 注3:由于ARM处理器的内存模型与PowerPC处理器的内存模型非常类似,本文将忽略它。
  • 注4:数据依赖性后文会专门说明。

为了保证内存可见性,java编译器在生成指令序列的适当位置会插入内存屏障指令来禁止特定类型的处理器重排序。JMM把内存屏障指令分为下列四类:

屏障类型 指令示例 说明
LoadLoad Barriers Load1; LoadLoad; Load2 确保Load1数据的装载,之前于Load2及所有后续装载指令的装载。
StoreStore Barriers Store1; StoreStore; Store2 确保Store1数据对其他处理器可见(刷新到内存),之前于Store2及所有后续存储指令的存储。
LoadStore Barriers Load1; LoadStore; Store2 确保Load1数据装载,之前于Store2及所有后续的存储指令刷新到内存。
StoreLoad Barriers Store1; StoreLoad; Load2 确保Store1数据对其他处理器变得可见(指刷新到内存),之前于Load2及所有后续装载指令的装载。StoreLoad Barriers会使该屏障之前的所有内存访问指令(存储和装载指令)完成之后,才执行该屏障之后的内存访问指令。

​ StoreLoad Barriers是一个“全能型”的屏障,它同时具有其他三个屏障的效果。现代的多处理器大都支持该屏障(其他类型的屏障不一定被所有处理器支持)。执行该屏障开销会很昂贵,因为当前处理器通常要把写缓冲区中的数据全部刷新到内存中(buffer fully flush)。

happens-before

​ 从JDK5开始,java使用新的JSR -133内存模型(本文除非特别说明,针对的都是JSR- 133内存模型)。JSR-133使用happens-before的概念来阐述操作之间的内存可见性。在JMM中,如果一个操作执行的结果需要对另一个操作可见,那么这两个操作之间必须要存在happens-before关系。这里提到的两个操作既可以是在一个线程之内,也可以是在不同线程之间。

happens-before 原则

​ 倘若在程序开发中,仅靠sychronized和volatile关键字来保证原子性、可见性以及有序性,那么编写并发程序可能会显得十分麻烦,幸运的是,在Java内存模型中,还提供了happens-before 原则来辅助保证程序执行的原子性、可见性以及有序性的问题,它是判断数据是否存在竞争、线程是否安全的依据,happens-before 原则内容如下

程序的顺序性规则

一个线程中,按照程序的顺序,前面的操作happens-before后续的任何操作。

​ 对于这一点,可能会有疑问。顺序性是指,我们可以按照顺序推演程序的执行结果,但是编译器未必一定会按照这个顺序编译,但是编译器保证结果一定==顺序推演的结果。

volatile规则

对一个volatile变量的写操作,happens-before后续对这个变量的读操作。

​ volatile变量的写,先发生于读,这保证了volatile变量的可见性,简单的理解就是,volatile变量在每次被线程访问时,都强迫从主内存中读该变量的值,而当该变量发生变化时,又会强迫将最新的值刷新到主内存,任何时刻,不同的线程总是能够看到该变量的最新值。

传递性规则

如果A happens-before B,B happens-before C,那么A happens-before C。

​ jdk1.5的增强就体现在这里。回到上面例子中,线程A中,根据规则一,对变量x的写操作是happens-before对变量v的写操作的,根据规则二,对变量v的写操作是happens-before对变量v的读操作的,最后根据规则三,也就是说,线程A对变量x的写操作,一定happens-before线程B对v的读操作,那么线程B在注释处读到的变量x的值,一定是42.

管程中的锁规则

对一个锁的解锁操作,happens-before后续对这个锁的加锁操作。

​ 解锁(unlock)操作必然发生在后续的同一个锁的加锁(lock)之前,也就是说,如果对于一个锁解锁后,再加锁,那么加锁的动作必须在解锁动作之后(同一个锁)。

线程启动规则

主线程A启动线程B,线程B中可以看到主线程启动B之前的操作。也就是start() happens before 线程B中的操作。

​ 线程的start()方法先于它的每一个动作,即如果线程A在执行线程B的start方法之前修改了共享变量的值,那么当线程B执行start方法时,线程A对共享变量的修改对线程B可见

线程终结规则

主线程A等待子线程B完成,当子线程B执行完毕后,主线程A可以看到线程B的所有操作。也就是说,子线程B中的任意操作,happens-before join()的返回。

​ 线程的所有操作先于线程的终结,Thread.join()方法的作用是等待当前执行的线程终止。假设在线程B终止之前,修改了共享变量,线程A从线程B的join方法成功返回后,线程B对共享变量的修改将对线程A可见。

线程中断规则

​ 对线程 interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测线程是否中断。

对象终结规则

对象终结规则 对象的构造函数执行,结束先于finalize()方法

示例

上述8条原则无需手动添加任何同步手段(synchronized|volatile)即可达到效果,下面我们结合前面的案例演示这8条原则如何判断线程是否安全,如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
ass MixedOrder{
int a = 0;
boolean flag = false;
public void writer(){
a = 1;
flag = true;
}

public void read(){
if(flag){
int i = a + 1
}
}
}

​ 同样的道理,存在两条线程A和B,线程A调用实例对象的writer()方法,而线程B调用实例对象的read()方法,线程A先启动而线程B后启动,那么线程B读取到的i值是多少呢?现在依据8条原则,由于存在两条线程同时调用,因此程序次序原则不合适。writer()方法和read()方法都没有使用同步手段,锁规则也不合适。没有使用volatile关键字,volatile变量原则不适应。线程启动规则、线程终止规则、线程中断规则、对象终结规则、传递性和本次测试案例也不合适。线程A和线程B的启动时间虽然有先后,但线程B执行结果却是不确定,也是说上述代码没有适合8条原则中的任意一条,也没有使用任何同步手段,所以上述的操作是线程不安全的,因此线程B读取的值自然也是不确定的。修复这个问题的方式很简单,要么给writer()方法和read()方法添加同步手段,如synchronized或者给变量flag添加volatile关键字,确保线程A修改的值对线程B总是可见。

注意事项

​ 注意,两个操作之间具有happens-before关系,并不意味着前一个操作必须要在后一个操作之前执行!happens-before仅仅要求前一个操作(执行的结果)对后一个操作可见,且前一个操作按顺序排在第二个操作之前(the first is visible to and ordered before the second)。happens- before的定义很微妙,后文会具体说明happens-before为什么要这么定义。

happens-before与JMM的关系如下图所示:

如上图所示,一个happens-before规则通常对应于多个编译器和处理器重排序规则。对于java程序员来说,happens-before规则简单易懂,它避免java程序员为了理解JMM提供的内存可见性保证而去学习复杂的重排序规则以及这些规则的具体实现。

评论